timeseries

Predicción del consumo eléctrico (IV): una aproximación con time-series ARIMA

Si bien en la anterior entrada realicé una aproximación para la predicción del consumo eléctrico a través de time-series, en esta utilizaré uno de los modelos más conocidos de forecasting: el ARIMA. Los modelos ARIMA funcionan bien cuando se disponen de series temporales largas (más de 40 puntos al menos) y el patrón de comportamiento es estable o consistente durante el tiempo. Requieren que la serie sea estacionaria, lo cual quiere decir que no deben tener una tendencia ni tampoco una variabilidad entre picos elevada.

Predicción del consumo eléctrico (III): una aproximación con time-series

En anteriores entradas he modelizado la demanda peninsular de REE (concretamente la previsión de dicha demanda) con diferentes aproximaciones y técnicas. Básicamente, he tratado de predecir el consumo diario con bastante éxito a través de random forest, correlacionando los datos de temperatura del aeropuerto de Madrid a nivel diario y creando variables nuevas que identificaban el tipo de días (festivo o laboral), el día de la semana, el mes o el quarter.

Forecasting: ¿cómo evolucionará la cuota del mercado eléctrico regulado vs mercado libre?

Realizar un forecast es una tarea que generalmente requiere de conocimiento del sector, hipotetizar sofre efectos que afecten al resultado de estudio y como no, tener unas mínimas habilidades de programación. En siguiente ejemplo, utilizo los datos de la CNMC del informe de supervisión de cambio de comercializador, donde se publican trimestralmente multitud de indicadores del sector eléctrico y gasista en cuanto a altas, switchings y movilidad entre grupos comercializadores.